Serveur d'exploration sur les maladies des plantes grimpantes

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Diversity Profiling of Grapevine Microbial Endosphere and Antagonistic Potential of Endophytic Pseudomonas Against Grapevine Trunk Diseases.

Identifieur interne : 000078 ( Main/Exploration ); précédent : 000077; suivant : 000079

Diversity Profiling of Grapevine Microbial Endosphere and Antagonistic Potential of Endophytic Pseudomonas Against Grapevine Trunk Diseases.

Auteurs : Jennifer Millera Niem [Australie] ; Regina Billones-Baaijens [Australie] ; Benjamin Stodart [Australie] ; Sandra Savocchia [Australie]

Source :

RBID : pubmed:32273871

Abstract

Grapevine trunk diseases (GTDs) are a serious problem of grapevines worldwide. The microbiota of the grapevine endosphere comprises prokaryotic and eukaryotic endophytes, which may form varied relationships with the host plant from symbiotic to pathogenic. To explore the interaction between grapevine endophytic bacteria and GTDs, the endomicrobiome associated with grapevine wood was characterized using next-generation Illumina sequencing. Wood samples were collected from grapevine trunks with and without external symptoms of GTD (cankers) from two vineyards in the Hunter Valley and Hilltops, NSW, Australia and metagenomic characterization of the endophytic community was conducted using the 16S rRNA gene (341F/806R) and ITS (1F/2R) sequences. Among the important GTD pathogens, Phaeomoniella, Phaeoacremonium, Diplodia and Cryptovalsa species were found to be abundant in both symptomatic and asymptomatic grapevines from both vineyards. Eutypa lata and Neofusicoccum parvum, two important GTD pathogens, were detected in low numbers in Hilltops and the Hunter Valley, respectively. Interestingly, Pseudomonas dominated the bacterial community in canker-free grapevine tissues in both locations, comprising 56-74% of the total bacterial population. In contrast, the Pseudomonas population in grapevines with cankers was significantly lower, representing 29 and 2% of the bacterial community in Hilltops and the Hunter Valley, respectively. The presence of Pseudomonas in healthy grapevine tissues indicates its ability to colonize and survive in the grapevine. The potential of Pseudomonas spp. as biocontrol agents against GTD pathogens was also explored. Dual culture tests with isolated fluorescent Pseudomonas against mycelial discs of nine Botryosphaeria dieback, three Eutypa dieback, and two Esca/Petri disease pathogens, revealed antagonistic activity for 10 Pseudomonas strains. These results suggest the potential of Pseudomonas species from grapevine wood to be used as biocontrol agents to manage certain GTD pathogens.

DOI: 10.3389/fmicb.2020.00477
PubMed: 32273871
PubMed Central: PMC7113392


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Diversity Profiling of Grapevine Microbial Endosphere and Antagonistic Potential of Endophytic
<i>Pseudomonas</i>
Against Grapevine Trunk Diseases.</title>
<author>
<name sortKey="Niem, Jennifer Millera" sort="Niem, Jennifer Millera" uniqKey="Niem J" first="Jennifer Millera" last="Niem">Jennifer Millera Niem</name>
<affiliation wicri:level="1">
<nlm:affiliation>National Wine and Grape Industry Centre, Charles Sturt University, Wagga Wagga, NSW, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>National Wine and Grape Industry Centre, Charles Sturt University, Wagga Wagga, NSW</wicri:regionArea>
<wicri:noRegion>NSW</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>School of Agricultural and Wine Sciences, Charles Sturt University, Wagga Wagga, NSW, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>School of Agricultural and Wine Sciences, Charles Sturt University, Wagga Wagga, NSW</wicri:regionArea>
<wicri:noRegion>NSW</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Billones Baaijens, Regina" sort="Billones Baaijens, Regina" uniqKey="Billones Baaijens R" first="Regina" last="Billones-Baaijens">Regina Billones-Baaijens</name>
<affiliation wicri:level="1">
<nlm:affiliation>National Wine and Grape Industry Centre, Charles Sturt University, Wagga Wagga, NSW, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>National Wine and Grape Industry Centre, Charles Sturt University, Wagga Wagga, NSW</wicri:regionArea>
<wicri:noRegion>NSW</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Stodart, Benjamin" sort="Stodart, Benjamin" uniqKey="Stodart B" first="Benjamin" last="Stodart">Benjamin Stodart</name>
<affiliation wicri:level="1">
<nlm:affiliation>School of Agricultural and Wine Sciences, Charles Sturt University, Wagga Wagga, NSW, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>School of Agricultural and Wine Sciences, Charles Sturt University, Wagga Wagga, NSW</wicri:regionArea>
<wicri:noRegion>NSW</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>Graham Centre for Agricultural Innovation (Charles Sturt University and NSW Department of Primary Industries), School of Agricultural and Wine Sciences, Charles Sturt University, Wagga Wagga, NSW, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>Graham Centre for Agricultural Innovation (Charles Sturt University and NSW Department of Primary Industries), School of Agricultural and Wine Sciences, Charles Sturt University, Wagga Wagga, NSW</wicri:regionArea>
<wicri:noRegion>NSW</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Savocchia, Sandra" sort="Savocchia, Sandra" uniqKey="Savocchia S" first="Sandra" last="Savocchia">Sandra Savocchia</name>
<affiliation wicri:level="1">
<nlm:affiliation>National Wine and Grape Industry Centre, Charles Sturt University, Wagga Wagga, NSW, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>National Wine and Grape Industry Centre, Charles Sturt University, Wagga Wagga, NSW</wicri:regionArea>
<wicri:noRegion>NSW</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>School of Agricultural and Wine Sciences, Charles Sturt University, Wagga Wagga, NSW, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>School of Agricultural and Wine Sciences, Charles Sturt University, Wagga Wagga, NSW</wicri:regionArea>
<wicri:noRegion>NSW</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2020">2020</date>
<idno type="RBID">pubmed:32273871</idno>
<idno type="pmid">32273871</idno>
<idno type="doi">10.3389/fmicb.2020.00477</idno>
<idno type="pmc">PMC7113392</idno>
<idno type="wicri:Area/Main/Corpus">000085</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000085</idno>
<idno type="wicri:Area/Main/Curation">000085</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000085</idno>
<idno type="wicri:Area/Main/Exploration">000085</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Diversity Profiling of Grapevine Microbial Endosphere and Antagonistic Potential of Endophytic
<i>Pseudomonas</i>
Against Grapevine Trunk Diseases.</title>
<author>
<name sortKey="Niem, Jennifer Millera" sort="Niem, Jennifer Millera" uniqKey="Niem J" first="Jennifer Millera" last="Niem">Jennifer Millera Niem</name>
<affiliation wicri:level="1">
<nlm:affiliation>National Wine and Grape Industry Centre, Charles Sturt University, Wagga Wagga, NSW, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>National Wine and Grape Industry Centre, Charles Sturt University, Wagga Wagga, NSW</wicri:regionArea>
<wicri:noRegion>NSW</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>School of Agricultural and Wine Sciences, Charles Sturt University, Wagga Wagga, NSW, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>School of Agricultural and Wine Sciences, Charles Sturt University, Wagga Wagga, NSW</wicri:regionArea>
<wicri:noRegion>NSW</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Billones Baaijens, Regina" sort="Billones Baaijens, Regina" uniqKey="Billones Baaijens R" first="Regina" last="Billones-Baaijens">Regina Billones-Baaijens</name>
<affiliation wicri:level="1">
<nlm:affiliation>National Wine and Grape Industry Centre, Charles Sturt University, Wagga Wagga, NSW, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>National Wine and Grape Industry Centre, Charles Sturt University, Wagga Wagga, NSW</wicri:regionArea>
<wicri:noRegion>NSW</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Stodart, Benjamin" sort="Stodart, Benjamin" uniqKey="Stodart B" first="Benjamin" last="Stodart">Benjamin Stodart</name>
<affiliation wicri:level="1">
<nlm:affiliation>School of Agricultural and Wine Sciences, Charles Sturt University, Wagga Wagga, NSW, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>School of Agricultural and Wine Sciences, Charles Sturt University, Wagga Wagga, NSW</wicri:regionArea>
<wicri:noRegion>NSW</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>Graham Centre for Agricultural Innovation (Charles Sturt University and NSW Department of Primary Industries), School of Agricultural and Wine Sciences, Charles Sturt University, Wagga Wagga, NSW, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>Graham Centre for Agricultural Innovation (Charles Sturt University and NSW Department of Primary Industries), School of Agricultural and Wine Sciences, Charles Sturt University, Wagga Wagga, NSW</wicri:regionArea>
<wicri:noRegion>NSW</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Savocchia, Sandra" sort="Savocchia, Sandra" uniqKey="Savocchia S" first="Sandra" last="Savocchia">Sandra Savocchia</name>
<affiliation wicri:level="1">
<nlm:affiliation>National Wine and Grape Industry Centre, Charles Sturt University, Wagga Wagga, NSW, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>National Wine and Grape Industry Centre, Charles Sturt University, Wagga Wagga, NSW</wicri:regionArea>
<wicri:noRegion>NSW</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>School of Agricultural and Wine Sciences, Charles Sturt University, Wagga Wagga, NSW, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>School of Agricultural and Wine Sciences, Charles Sturt University, Wagga Wagga, NSW</wicri:regionArea>
<wicri:noRegion>NSW</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Frontiers in microbiology</title>
<idno type="ISSN">1664-302X</idno>
<imprint>
<date when="2020" type="published">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Grapevine trunk diseases (GTDs) are a serious problem of grapevines worldwide. The microbiota of the grapevine endosphere comprises prokaryotic and eukaryotic endophytes, which may form varied relationships with the host plant from symbiotic to pathogenic. To explore the interaction between grapevine endophytic bacteria and GTDs, the endomicrobiome associated with grapevine wood was characterized using next-generation Illumina sequencing. Wood samples were collected from grapevine trunks with and without external symptoms of GTD (cankers) from two vineyards in the Hunter Valley and Hilltops, NSW, Australia and metagenomic characterization of the endophytic community was conducted using the 16S rRNA gene (341F/806R) and ITS (1F/2R) sequences. Among the important GTD pathogens,
<i>Phaeomoniella, Phaeoacremonium, Diplodia</i>
and
<i>Cryptovalsa</i>
species were found to be abundant in both symptomatic and asymptomatic grapevines from both vineyards.
<i>Eutypa lata</i>
and
<i>Neofusicoccum parvum</i>
, two important GTD pathogens, were detected in low numbers in Hilltops and the Hunter Valley, respectively. Interestingly,
<i>Pseudomonas</i>
dominated the bacterial community in canker-free grapevine tissues in both locations, comprising 56-74% of the total bacterial population. In contrast, the
<i>Pseudomonas</i>
population in grapevines with cankers was significantly lower, representing 29 and 2% of the bacterial community in Hilltops and the Hunter Valley, respectively. The presence of
<i>Pseudomonas</i>
in healthy grapevine tissues indicates its ability to colonize and survive in the grapevine. The potential of
<i>Pseudomonas</i>
spp. as biocontrol agents against GTD pathogens was also explored. Dual culture tests with isolated fluorescent
<i>Pseudomonas</i>
against mycelial discs of nine Botryosphaeria dieback, three Eutypa dieback, and two Esca/Petri disease pathogens, revealed antagonistic activity for 10
<i>Pseudomonas</i>
strains. These results suggest the potential of
<i>Pseudomonas</i>
species from grapevine wood to be used as biocontrol agents to manage certain GTD pathogens.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="PubMed-not-MEDLINE" Owner="NLM">
<PMID Version="1">32273871</PMID>
<DateRevised>
<Year>2020</Year>
<Month>09</Month>
<Day>28</Day>
</DateRevised>
<Article PubModel="Electronic-eCollection">
<Journal>
<ISSN IssnType="Print">1664-302X</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>11</Volume>
<PubDate>
<Year>2020</Year>
</PubDate>
</JournalIssue>
<Title>Frontiers in microbiology</Title>
<ISOAbbreviation>Front Microbiol</ISOAbbreviation>
</Journal>
<ArticleTitle>Diversity Profiling of Grapevine Microbial Endosphere and Antagonistic Potential of Endophytic
<i>Pseudomonas</i>
Against Grapevine Trunk Diseases.</ArticleTitle>
<Pagination>
<MedlinePgn>477</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.3389/fmicb.2020.00477</ELocationID>
<Abstract>
<AbstractText>Grapevine trunk diseases (GTDs) are a serious problem of grapevines worldwide. The microbiota of the grapevine endosphere comprises prokaryotic and eukaryotic endophytes, which may form varied relationships with the host plant from symbiotic to pathogenic. To explore the interaction between grapevine endophytic bacteria and GTDs, the endomicrobiome associated with grapevine wood was characterized using next-generation Illumina sequencing. Wood samples were collected from grapevine trunks with and without external symptoms of GTD (cankers) from two vineyards in the Hunter Valley and Hilltops, NSW, Australia and metagenomic characterization of the endophytic community was conducted using the 16S rRNA gene (341F/806R) and ITS (1F/2R) sequences. Among the important GTD pathogens,
<i>Phaeomoniella, Phaeoacremonium, Diplodia</i>
and
<i>Cryptovalsa</i>
species were found to be abundant in both symptomatic and asymptomatic grapevines from both vineyards.
<i>Eutypa lata</i>
and
<i>Neofusicoccum parvum</i>
, two important GTD pathogens, were detected in low numbers in Hilltops and the Hunter Valley, respectively. Interestingly,
<i>Pseudomonas</i>
dominated the bacterial community in canker-free grapevine tissues in both locations, comprising 56-74% of the total bacterial population. In contrast, the
<i>Pseudomonas</i>
population in grapevines with cankers was significantly lower, representing 29 and 2% of the bacterial community in Hilltops and the Hunter Valley, respectively. The presence of
<i>Pseudomonas</i>
in healthy grapevine tissues indicates its ability to colonize and survive in the grapevine. The potential of
<i>Pseudomonas</i>
spp. as biocontrol agents against GTD pathogens was also explored. Dual culture tests with isolated fluorescent
<i>Pseudomonas</i>
against mycelial discs of nine Botryosphaeria dieback, three Eutypa dieback, and two Esca/Petri disease pathogens, revealed antagonistic activity for 10
<i>Pseudomonas</i>
strains. These results suggest the potential of
<i>Pseudomonas</i>
species from grapevine wood to be used as biocontrol agents to manage certain GTD pathogens.</AbstractText>
<CopyrightInformation>Copyright © 2020 Niem, Billones-Baaijens, Stodart and Savocchia.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Niem</LastName>
<ForeName>Jennifer Millera</ForeName>
<Initials>JM</Initials>
<AffiliationInfo>
<Affiliation>National Wine and Grape Industry Centre, Charles Sturt University, Wagga Wagga, NSW, Australia.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>School of Agricultural and Wine Sciences, Charles Sturt University, Wagga Wagga, NSW, Australia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Billones-Baaijens</LastName>
<ForeName>Regina</ForeName>
<Initials>R</Initials>
<AffiliationInfo>
<Affiliation>National Wine and Grape Industry Centre, Charles Sturt University, Wagga Wagga, NSW, Australia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Stodart</LastName>
<ForeName>Benjamin</ForeName>
<Initials>B</Initials>
<AffiliationInfo>
<Affiliation>School of Agricultural and Wine Sciences, Charles Sturt University, Wagga Wagga, NSW, Australia.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Graham Centre for Agricultural Innovation (Charles Sturt University and NSW Department of Primary Industries), School of Agricultural and Wine Sciences, Charles Sturt University, Wagga Wagga, NSW, Australia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Savocchia</LastName>
<ForeName>Sandra</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>National Wine and Grape Industry Centre, Charles Sturt University, Wagga Wagga, NSW, Australia.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>School of Agricultural and Wine Sciences, Charles Sturt University, Wagga Wagga, NSW, Australia.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2020</Year>
<Month>03</Month>
<Day>26</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Switzerland</Country>
<MedlineTA>Front Microbiol</MedlineTA>
<NlmUniqueID>101548977</NlmUniqueID>
<ISSNLinking>1664-302X</ISSNLinking>
</MedlineJournalInfo>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Botryosphaeria dieback</Keyword>
<Keyword MajorTopicYN="N">Esca/Petri disease</Keyword>
<Keyword MajorTopicYN="N">Eutypa dieback</Keyword>
<Keyword MajorTopicYN="N">Pseudomonas poae</Keyword>
<Keyword MajorTopicYN="N">biocontrol</Keyword>
<Keyword MajorTopicYN="N">endophyte</Keyword>
<Keyword MajorTopicYN="N">microbiome</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2019</Year>
<Month>10</Month>
<Day>24</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2020</Year>
<Month>03</Month>
<Day>04</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2020</Year>
<Month>4</Month>
<Day>11</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2020</Year>
<Month>4</Month>
<Day>11</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>4</Month>
<Day>11</Day>
<Hour>6</Hour>
<Minute>1</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">32273871</ArticleId>
<ArticleId IdType="doi">10.3389/fmicb.2020.00477</ArticleId>
<ArticleId IdType="pmc">PMC7113392</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Plant Dis. 2018 Jan;102(1):12-39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30673457</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microb Ecol. 2011 Jul;62(1):188-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21625971</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2010 Oct 1;26(19):2460-1</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20709691</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Microbiol. 2017 Mar 15;8:413</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28360897</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Dis. 1999 May;83(5):404-418</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30845530</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2005 Jun;166(3):1063-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15869663</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Microbiol. 2009 Aug;47(4):393-401</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19763412</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiol Resour Announc. 2019 Apr 11;8(15):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30975811</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Announc. 2013 Mar 07;1(2):e0002013</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23516179</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2004 Jul 27;101(30):11030-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15258291</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genom Data. 2016 Aug 04;9:154-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27583206</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Syst Evol Microbiol. 2003 Sep;53(Pt 5):1461-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">13130034</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2014 Jun;80(12):3585-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24682305</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2011 Jul;77(14):5018-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21622794</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Microbiol. 2015 Oct 27;6:1137</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26579076</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2014 May 01;9(5):e95928</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24788412</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Lab Clin Med. 1954 Aug;44(2):301-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">13184240</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2014 Nov 11;9(11):e112763</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25387008</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Dis. 2018 Aug;102(8):1489-1499</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30673411</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Can J Microbiol. 2010 Mar;56(3):209-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20453907</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Phytopathol. 2017 Aug 4;55:61-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28489497</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Methods. 2013 Oct;10(10):996-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23955772</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2006 Jul;72(7):5069-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16820507</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Microbiol Biotechnol. 2013 Dec;97(23):10163-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24136470</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Microbiol. 2017 Nov 15;8:2224</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29187837</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Eukaryot Microbiol. 1999 Jul-Aug;46(4):327-38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10461381</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 1987 Jul;4(4):406-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3447015</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Syst Evol Microbiol. 2006 Nov;56(Pt 11):2657-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17082407</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Food Microbiol. 2016 Feb 16;219:56-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26736065</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiol Resour Announc. 2019 Jun 27;8(26):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31248998</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2014 Mar 1;30(5):614-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24142950</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2016 Aug 30;82(18):5542-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27371584</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiol Res. 2016 Feb;183:42-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26805617</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Ecol. 2010 Oct;74(1):124-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20618857</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Microbiol. 2014 Sep 05;5:427</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25250017</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2004 Oct;17(10):1078-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15497400</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Methods. 2010 May;7(5):335-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20383131</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2016 Jul;33(7):1870-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27004904</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Lett. 2008 Jan;278(1):1-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18034833</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2017 Jul 3;45(W1):W180-W188</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28449106</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2014 Jan 16;9(1):e85622</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24454903</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 1990 Oct 5;215(3):403-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2231712</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiol Mol Biol Rev. 2015 Sep;79(3):293-320</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26136581</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2011 Aug 15;27(16):2194-200</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21700674</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2014 Jan 7;111(1):E139-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24277822</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Australie</li>
</country>
</list>
<tree>
<country name="Australie">
<noRegion>
<name sortKey="Niem, Jennifer Millera" sort="Niem, Jennifer Millera" uniqKey="Niem J" first="Jennifer Millera" last="Niem">Jennifer Millera Niem</name>
</noRegion>
<name sortKey="Billones Baaijens, Regina" sort="Billones Baaijens, Regina" uniqKey="Billones Baaijens R" first="Regina" last="Billones-Baaijens">Regina Billones-Baaijens</name>
<name sortKey="Niem, Jennifer Millera" sort="Niem, Jennifer Millera" uniqKey="Niem J" first="Jennifer Millera" last="Niem">Jennifer Millera Niem</name>
<name sortKey="Savocchia, Sandra" sort="Savocchia, Sandra" uniqKey="Savocchia S" first="Sandra" last="Savocchia">Sandra Savocchia</name>
<name sortKey="Savocchia, Sandra" sort="Savocchia, Sandra" uniqKey="Savocchia S" first="Sandra" last="Savocchia">Sandra Savocchia</name>
<name sortKey="Stodart, Benjamin" sort="Stodart, Benjamin" uniqKey="Stodart B" first="Benjamin" last="Stodart">Benjamin Stodart</name>
<name sortKey="Stodart, Benjamin" sort="Stodart, Benjamin" uniqKey="Stodart B" first="Benjamin" last="Stodart">Benjamin Stodart</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/GrapevineDiseaseV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000078 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000078 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    GrapevineDiseaseV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:32273871
   |texte=   Diversity Profiling of Grapevine Microbial Endosphere and Antagonistic Potential of Endophytic Pseudomonas Against Grapevine Trunk Diseases.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:32273871" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a GrapevineDiseaseV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 16:11:34 2020. Site generation: Wed Nov 18 16:12:50 2020